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ABSTRACT: Functional nylon 6,6 nanofibers incorporating cyclodextrins (CD) were developed via electrospinning. Enhanced thermal

stability of the nylon 6,6/CD nanofibers was observed due to interaction between CD and nylon 6,6. X-ray photoelectron spectros-

copy and attenuated total reflectance Fourier transform infrared spectroscopy studies indicated the existence of some CD molecules

on the surface of the nanofibers. Electrospun nylon 6,6 nanofibers without having CD were ineffective for entrapment of toluene

vapor from the environment, whereas nylon 6,6/CD nanofibrous membranes can effectively entrap toluene vapor from the surround-

ing by taking advantage of the high surface-volume ratio of nanofibers with the added advantage of inclusion complexation capability

of CD presenting on the nanofiber surface. The modeling studies for formation of inclusion complex between CD and toluene were

also performed by using ab initio techniques. Our results suggest that nylon 6,6/CD nanofibrous membranes may have potential to

be used as air filters for the removal of organic vapor waste from surroundings. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015,

132, 41941.
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INTRODUCTION

Air pollution is undoubtedly a major threat to the human

health as industrialization and world population are growing

day by day.1,2 In addition to aerosols, volatile organic com-

pounds (VOC) into air are of the major pollutants daily

inhaled, and can cause serious sicknesses such as fatigue, head-

ache, and even cancer.2–6 The entrapment of VOC from indoor

and outdoor environments is a high importance necessity for a

healthier life. More practical and more efficient VOC removal

techniques are in demand, since use of several methods includ-

ing physical, chemical, and biological treatments to remove

VOC still have limitations and challenges to sudden loading

stresses. Air filters can remove VOC by mostly adsorption.5,7

The nanofibrous membranes obtained via electrospinning are

desirable filtering materials due to their exclusive properties

such as very high surface area to volume ratio, nanoporous

structure, high permeability, low basis weight.7–15 Moreover,

during electrospinning or post-processing, design flexibility of

the nanofibers with chemical/physical functionalization may

promote their applicability in filtration.16–22

Cyclodextrins (CD) that are cyclic oligosaccharides consisting

of a(1,4)-linked glucopyranose units with a toroid-shaped

molecular structure are extensively used in separations, purifi-

cation, and filtration purposes due to their unique property

to form inclusion complexes (IC) with hazardous and pollut-

ing organic compounds.23–28 Therefore, the hydrophobic cavity

of CD acts as a host for various organic guest molecules.29–31

There are several types of non-covalent binding forces such as

van der Waals interactions, hydrogen bonding between host

CD and guest molecules. The most common CD types having

six, seven, and eight glucopyranose units are named as a-CD,

b-CD, and c-CD, respectively.29,30 While the height of the CD

cavity is the same (�8 Å) for all three types, the number of

glucopyranose units determine the internal diameter of the

cavity as �6 Å, 8 Å, and 10 Å for a-CD, b-CD, and c-CD,

respectively [Figure 1(a)].29,30 The formation and stability of

the CD-IC depend on many factors such as size/shape match

and binding forces between the CD host and guest

molecules.32,33

Our particular interest is the functionalization of electrospun

nanofibrous membranes with CD that can provide efficient

entrapment of organic waste compounds from the surroundings

by combining the IC formation capability of CD with the

adsorption capability of very high surface area of the nanofib-

ers.21,22,34–37 In our recent studies, we reported that nanofibers

incorporating CD can remove organic waste molecules from
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vapor phase34,35 and liquid media.21,22,36,37 Physically bounded

CD onto nanofibers could leach out from the nanofiber matrix

in aqueous medium, since CD are water soluble. Therefore,

CD-functionalized nanofibers are more useful for removal of

VOC without any leaching problem.

Here, our aim was to remove of VOC from environment by

using the CD functionalized nanofibrous membranes and inves-

tigate the effect of not only CD amount, but also type of CD

on the entrapment efficiency of VOC. Moreover, in this study,

we have investigated not only experimental but also theoretical

results to evaluate the effect of CD type on the trapping effi-

ciency of VOC. With this purpose, we have produced the CD

functionalized electrospun nylon 6,6 nanofibers (nylon 6,6/CD)

by using a-CD, b-CD, and c-CD in two different % weight

loading (25% and 50%, w/w, with respect to nylon 6,6). Figure

1(b) indicates the schematic representation of the electrospin-

ning of nylon 6,6/CD solution. Electrospun nylon 6,6 nanofi-

brous membranes have been indicated as a suitable material for

filtration application in the literature,38–40 which is the reason

of the selection of the nylon 6,6 as a nanofibrous polymeric

matrix in this study. The morphological, structural, thermal,

and surface characteristics of the nylon 6,6 and nylon 6,6/CD

nanofibers were investigated. Thereafter, toluene that is widely

used as an industrial feedstock and a solvent was used as a

model of VOC. The removing of toluene vapor from environ-

ment is of quite importance, since inhalation of toluene can

cause tiredness, confusion, weakness, memory loss, nausea, loss

of appetite, hearing and color vision loss, unconsciousness, and

even death. Toluene vapor entrapment capability of nylon 6,6

and nylon 6,6/CD nanofibrous membranes was tested. We have

also performed the modeling studies for formation of IC

between toluene and CD (a-CD, b-CD, and c-CD) by using ab

initio techniques. Based on the obtained results, nylon 6,6/CD

nanofibrous membranes could be considered as a suitable can-

didate for removal of VOC from out/indoor environments.

EXPERIMENTAL

Materials

Three types of native CD (a-CD, b-CD, and c-CD) were pur-

chased from Wacker Chemie AG. Nylon 6,6 pellets (relative vis-

cosity: 230.000–280.000), formic acid (98–100%), toluene

(puriss., �99.5%), and acetonitrile chromasolv (99.9%) were

purchased from Sigma-Aldrich. All chemicals were used as-

received without any further purification.

Preparation of the Solutions for Electrospinning

Nylon 6,6 solution without CD was prepared by dissolving 10%

(w/v) nylon 6,6 in formic acid. In the case of nylon 6,6/CD sol-

utions, a-CD, b-CD, and c-CD in different ratio (25% and

50%, w/w, with respect to nylon 6,6) were dissolved in formic

acid and then, nylon 6,6 (10%, w/v) was added to each CD

solution individually and stirred for 3 h at room temperature to

obtain homogeneous and clear solutions. Table I summarizes

the compositions of the resulting nylon 6,6 and nylon 6,6/CD

solutions used for electrospinning.

Electrospinning

The individual nylon 6,6 and nylon 6,6/CD solutions were

loaded into 10 mL syringes fitted with metallic needles

(�0.7 mm inner diameter). The syringes were placed horizon-

tally on the syringe pump (KDS 101, KD Scientific). The feed

Figure 1. Schematic representations of (a) chemical structure of b-CD and approximate dimensions of a-CD, b-CD, c-CD, and (b) electrospinning of

nylon 6,6/CD solution. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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rate of the solutions was set to 1 mL/h during electrospinning.

The high voltage power supply (Matsusada, AU Series) was

used to apply a voltage of 115 kV for the electrospinning. Ran-

domly oriented nanofibers were deposited on a grounded sta-

tionary cylindrical metal collector (height: 15 cm, diameter:

9 cm) covered by a piece of aluminum foil and located at

10 cm from the end of the tip. The electrospinning process was

performed at �23�C and 29% relative humidity in an enclosed

Plexiglas chamber.

Measurements and Characterizations

Anton Paar Physica MCR 301 Rheometer equipped with cone/

plate accessory (spindle type CP40-2) was used to measure the

viscosity of the each solution used for electrospinning at 22�C
and a constant shear rate of 100 s21. Scanning electron micro-

scope (SEM, FEI-Quanta 200 FEG) was employed to investigate

the morphology and dimensions of nylon 6,6 and nylon 6,6/CD

nanofibers. A nominal 5 nm Au/Pd was sputtered on the sam-

ples prior to SEM analysis. The average fiber diameters (AFD)

of the samples were determined taking about 100 measurements

from the SEM images of each sample. X-ray diffraction (XRD)

patterns of the nanofibers were recorded in the range of

2h 5 5�–30� using PANalytical X’Pert Pro Multi Purpose X-ray

diffractometer with Cu Ka radiation (k 5 1.5418 Å). Thermog-

ravimetric analyzer (TGA, TA Q500) was used to investigate the

thermal properties of the nanofibers. TGA measurements were

performed from room temperature to 600�C at a constant heat-

ing rate of 20�C/min under the nitrogen atmosphere. The sur-

face chemical characterizations of the nanofibers were

performed by attenuated total reflectance Fourier transform

infrared spectroscopy (ATR-FTIR, Bruker, VERTEX 70) and X-

ray photoelectron spectroscopy (XPS, Thermo Scientific K-

Alpha, monochromated Al Ka X-ray source, hm 5 1486.6 eV)

with flood gun charge neutralizer. The ATR-FTIR spectra were

recorded with FTIR spectrometer equipped with ATR set up

containing a germanium crystal and a liquid nitrogen-cooled

mercury cadmium telluride detector. Each spectrum over a

range 900–3700 cm21 was obtained with a resolution of 4 cm21

by taking 64 scans. XPS wide energy survey scans (0–1360 eV)

and the O 1s core-level spectra were obtained from the surface

of the samples (400 mm spot size) at pass energy of 150 and 50

eV with energy step size of 1 and 0.1 eV, respectively. Peak

deconvolutions for the core-level spectra were performed with

Avantage software.

Entrapment of Toluene Vapor by the Nanofibrous

Membranes

Toluene was used as a model VOC in order to investigate the

molecular entrapment capability of the nylon 6,6, nylon 6,6/

25a-CD, nylon 6,6/25b-CD, nylon 6,6/25c-CD, nylon 6,6/50a-

CD, nylon 6,6/50b-CD, and nylon 6,6/50c-CD nanofibers. The

nanofibrous membranes were exposed to the toluene vapor in a

sealed glass desiccator (30 cm [diameter] and 30 cm [height])

at �24�C and 30% relative humidity. In this experiment, a glass

Petri dish including 20 mL of toluene (as-received, without any

dilution) was located at the bottom of desiccator while three

pieces of each sample (about 22 mg, 4 3 4 cm2) were placed

on the supporting layer positioned at 7 cm high from the bot-

tom of desiccator. After the electrospun nanofibrous membranes

were kept in this sealed desiccator for 12 h to expose to excess

toluene vapor, they were taken out of the desiccator and kept in

the suction hood for 5 h in order to remove the uncomplexed

toluene molecules that were only adsorbed on the membranes.

Finally, high performance liquid chromatography (HPLC, Agi-

lent 1200 series) equipped with VWD UV detector was used in

order to determine the amount of toluene entrapped by the

membranes. For this, each membrane was immersed in 4 mL

ACN and kept in it for 2 h to extract toluene from the mem-

branes. Then 0.5 mL of these solutions was put into HPLC

vials, individually to measure toluene concentration in them.

Injection volume was set to 5 mL and toluene was detected at

254 nm, in 4 min using the Agilent C18 column (150 3

4.6 mm2, 5 mm pores) and ACN (100%) as a mobile phase with

the 0.5 mL/min of flow rate. The toluene peak areas in the

resulting HPLC chromatograms were converted to toluene con-

centration using the calibration curve (R2 5 0.999) that was pre-

pared using toluene solutions having different concentrations

(58, 29, 14.5, 7.2, 3.6, 1.8, and 0.9 ppm).

Computational Method

The structures of toluene, a-,41,42 b-,43 and c-CD,44 and their

ICs were optimized by using ab initio methods based on density

functional theory,45,46 implemented in the Vienna ab initio sim-

ulation package.47,48 The initial geometries were obtained from

Cambridge Structural Database.49 The exchange-correlation was

Table I. Properties of Nylon 6,6 and Nylon 6,6/CD Solutions and the Resulting Nanofibers

Samples % Nylon (w/v)a Type of CD, % (w/w)b Viscosity (Pa s) AFD (nm) Fiber morphology

Nylon 6,6 10 – 0.063 95 6 15 Bead-free nanofibers

Nylon 6,6/25a-CD 10 a-CD, 25 0.078 105 6 20 Bead-free nanofibers

Nylon 6,6/25b-CD 10 b-CD, 25 0.072 110 6 25 Bead-free nanofibers

Nylon 6,6/25c-CD 10 c-CD, 25 0.084 110 6 20 Bead-free nanofibers

Nylon 6,6/50a-CD 10 a-CD, 50 0.113 140 6 35 Bead-free nanofibers

Nylon 6,6/50b-CD 10 b-CD, 50 0.097 130 6 25 Bead-free nanofibers

Nylon 6,6/50c-CD 10 c-CD, 50 0.106 130 6 20 Bead-free nanofibers

a With respect to solvent (formic acid).
b With respect to polymer (nylon).
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treated within Perdew-Burke-Enzerhof of parameterization of

the generalized gradient approximation50 with inclusion of Van

der Waals correction.51 The element potentials were described

by projector augmented-wave method52 using a plane-wave

basis set with a kinetic energy cutoff of 400 eV. The Brillouin

zone integration was performed at the gamma-point. All struc-

tures were considered as isolated molecules in a vacuum and

were relaxed using the Kosugi algorithm with simultaneous

minimization of the total energy and interatomic forces. The

convergence on the total energy and force was set to 1025 eV

and 1022 eV/Å, respectively.

RESULTS AND DISCUSSION

Morphological Characterization of the Nanofibers

The representative SEM images of nylon 6,6 and nylon 6,6/CD

nanofibers are given in Figure 2. Bead-free nanofibers were

yielded from the nylon 6,6 (10%, w/v) solutions both without

and with CD. The properties of the solutions (composition and

viscosity) and the resulting electrospun nanofibers (AFD and

morphology) are summarized in Table I. It was observed that

the AFD of nylon 6,6/CD nanofibers was slightly increased

when compared to pristine nylon 6,6 nanofibers. This is possi-

bly due to greater resistance to stretching and elongation of the

electrified jet of nylon 6,6/CD solutions having higher solution

viscosity, and that is comparable with the general observation in

the literature.53–55 Moreover, as the content of the CD increased

from 25% to 50% (w/w, with respect to nylon 6,6) viscosity of

the solutions increased too, and larger AFD was yielded for the

nylon 6,6/50CD. A possible reason for the viscosity increase

may be some interaction (H bonds) between the CD molecules

and nylon 6,6 polymer chains, which is given in ATR-FTIR dis-

cussion later on.56

Structural Characterization of the Nanofibers

In order to investigate whether any crystalline CD aggregates

were present in the fiber matrix or not, XRD patterns of the as-

received CD and nanofibers were obtained (Figure 3). The as-

received a-CD, b-CD and c-CD have “cage type” crystalline

structures in which cavity of each CD molecule is blocked by

the adjacent CD molecules,55,57 and so their XRD patterns have

distinct diffraction peaks that are annotated in Figure 3(a): 2h
ffi 12.0�, 14.4�, 21.7� for a-CD, 2h ffi 10.8�, 12.6�, 19.7�, 21.3�

for b-CD and 2h ffi 12.3�, 16.5�, 21.8� for c-CD. However, the

broad halo XRD patterns of pristine nylon 6,6 and nylon 6,6/

CD electrospun nanofibrous membranes [Figure 3(b)] did not

show any crystalline peaks of a-CD, b-CD, and c-CD, indicating

that all three types of CD were distributed in the nylon 6,6 fiber

matrix without forming crystal aggregates. Compared to CD

powder having cage type crystalline structure, cavities of CD

dispersed within the fiber matrix are more available for com-

plexation with the aromatic molecules from the environment.

On the other hand, it is known that nanofibers including CD

have very large surface area compared to CD powder. Therefore,

the combination of the very high surface area of electrospun

nanofibers with the higher inclusion complexation capability of

CD molecules increases the VOC entrapment efficiency.

In Figure 3(b), the XRD pattern of pure nylon 6,6 nanofibers

exhibited the reflection of (100) and (010, 110) planes at about

20.3� and 23.7� indicating a-type crystals structure of nylon 6,6

(triclinic phase).58–61 The a1 peak (2h ffi 20.3�) arises from the

distance between hydrogen bonded chains, while the separation

of hydrogen-bonded planar sheets results in the occurrence of

a2 peak (2h ffi 23.7�).58,59,62,63 As stated in the literature, besides

a phase, c phase showing peaks at about 13.33� and 22.2� can

also exist in nylon 6,6. However, c phase illustrating pleated

sheets of methylene units with hydrogen bonding between

sheets rather than within sheets, is more thermodynamically

unstable than a phase, and so it does not often appear in nylon

6,6 at room temperature.63,64 The XRD patterns of all nylon

6,6/CD nanofibers are very similar to the XRD pattern of pure

nylon 6,6 nanofibers as displayed Figure 3(b), indicating the

crystalline structure of nylon 6,6 (only a phase/triclinic) have

remained unchanged with the presence of CD.

Figure 2. Representative SEM images of electrospun nanofibers from the solutions of (a) nylon 6,6, (b) nylon 6,6/25a-CD, (c) nylon 6,6/25b-CD, (d)

nylon 6,6/25c-CD, (e) nylon 6,6/50a-CD, (f) nylon 6,6/50b-CD, and (g) nylon 6,6/50c-CD.
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On the other hand, the inclusion complexation possibility

between nylon chains and CD has been reported in the litera-

ture under specific conditions (heating technique) and certain

solution preparation procedure.65–67 In those studies, the pre-

cipitation of the IC occurred in the prepared solutions and the

characteristic XRD peaks of “channel-type” CD crystal structure

in which CD molecules are aligned and stacked on top of each

other,56,57,68 were confirmed the inclusion complexation

between CD and nylon.65–67 However, we did not observe nei-

ther precipitation nor channel-type CD crystal structure in our

XRD results suggested that CD and nylon 6,6 chains did not

form IC in our experimental conditions. It is known that the IC

formation between host molecules and guest CD is affected by

process temperature, solvent type, and host/guest ratio.29

Thermal Characterization of the Nanofibers

TGA was used to investigate thermal characteristics of the samples

and to determine the weight percentage of CD in the resulting

electrospun nylon 6,6/CD nanofibers. We found out that TGA

data of nylon 6,6/CD nanofibers obtained from a-CD, b-CD, and

c-CD were almost same. So as a representative data, TGA and

derivative of TGA thermograms of nylon 6,6/a-CD nanofibers

(nylon 6,6/25a-CD, nylon 6,6/50a-CD) compared with pristine

nylon 6,6 nanofibers and a-CD are only given in Figure 4.

The TGA of pure a-CD has an initial weight loss (�10%) below

100�C and major weight loss between 275 and 365�C owing to

water loss and main degradation of CD, respectively.69,70 The deg-

radation of nylon 6,6 nanofibers occurs between 345 and 490�C as

it is seen in the TGA thermogram of pristine nylon 6,6 nanofibers.

The observation of CD degradations in the TGA thermograms of

nylon 6,6/CD nanofibers confirmed the incorporation of CD mole-

cules in the nylon 6,6 fiber matrix. It is obvious from these thermo-

grams that the thermal stability of CD within nanofibers is higher

than that of as-received CD. Therefore, the degradation of a-CD

was observed in the range of 290–390�C and 290–400�C for nylon

6,6/25a-CD and nylon 6,6/50a-CD nanofibers, respectively. The

degradations of b-CD and c-CD in the nanofibers also started at

�290�C, however, they carried out until approximately 385 and

375�C for nylon 6,6/25b-CD and nylon 6,6/25c-CD, respectively;

395 and 390�C for nylon 6,6/50b-CD and nylon 6,6/50c-CD,

respectively (data not shown). The increase of degradation

Figure 3. XRD patterns of (a) as-received CD and (b) the electrospun nanofibers. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. TGA and derivative TGA thermograms of as-received a-CD and the electrospun nanofibers. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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temperature of CD in the nanofibers occurred depending on CD

type and amount in the nanofibers. Moreover, we also observed

that the thermal degradation of nylon 6,6 in the nylon 6,6/CD

nanofibers was also shifted to slightly higher temperature with

increasing CD content. The improved thermal stability of the

resulting nylon 6,6/CD nanofibers are attributed to the interaction

between the polymeric matrix and the CD which is verified by the

ATR-FTIR data. The increase of thermal stability of CD in electro-

spun nylon 6,6-CD nanofibers can be further improved the applic-

ability of these nanofibers.

The amount of CD present in the nylon 6,6/CD nanofibers was

calculated from TGA thermograms as approximately 18% and

33% weight in nylon 6,6/25a-CD and nylon 6,6/50a-CD nanofib-

ers, respectively. About 17% and 33% weight b-CD were deter-

mined in nylon 6,6/25b-CD and nylon 6,6/50b-CD nanofibers,

respectively. In the case of nylon 6,6/25c-CD and nylon 6,6/50c-

CD nanofibers, c-CD was calculated as nearly 19% and 35%,

respectively. In order to prepare nylon 6,6/25CD and nylon 6,6/

50CD solutions 20% and 40% (w/w, with respect to sample) CD

hydrates including about 10% water were used, respectively. The

actual initial content of CD in nylon 6,6/CD solutions were cal-

culated as �18% and �36% (w/w, with respect to sample) by

Figure 5. ATR-FTIR spectra of the as received CD, electrospun nylon 6,6 and nylon 6,6/CD nanofibers. Enlarged region of these spectra are given at left

side (between 3700 and 3000 cm21) and right side (between 1100 and 960 cm21). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table II. Atomic Concentrations Generated from XPS Wide Energy Sur-

vey Scans

Samples C (%) O (%) N (%)

a-CD 58.45 41.55 –

b-CD 57.69 42.31 –

c-CD 58.47 41.53 –

Nylon 6,6 75.45 12.67 11.88

Nylon 6,6/25a-CD 74.25 14.87 10.88

Nylon 6,6/25b-CD 75.86 14.43 9.71

Nylon 6,6/25c-CD 74.65 14.13 11.22

Nylon 6,6/50a-CD 74.28 17.05 8.67

Nylon 6,6/50b-CD 69.35 20.25 10.4

Nylon 6,6/50c-CD 74.58 18.37 7.05
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subtracting the water amount. As a result, the calculation for

nylon 6,6/25CD nanofibers almost matched with the initial

amount of CD added in nylon 6,6/25CD solutions. In addition,

the c-CD content in nylon 6,6/50c-CD nanofibers was also coher-

ent with the initial amount in that solution. However, the CD

amount was calculated slightly less amount for nylon 6,6/50a-CD

and nylon 6,6/50b-CD nanofibers possibly because of overlapping

of degradation temperatures of nylon 6,6 and CD. On the other

hand, we did not observe any weight loss up to 100�C in the

TGA thermograms of nylon 6,6/CD nanofibers despite of 10%

water in pure CD, indicating the cavities of CD in the nanofibers

are free of water, similar to our previous studies.34,56

Surface Chemical Characterization of the Nanowebs

Phase separation of CD from polymer matrix is quite possible

during solvent evaporation in the electrospinning process due

to their different hydrophilic/hydrophobic nature, and certain

amount of CD molecules may reside on the polymeric fiber sur-

face.34,36,37,71 To confirm the presence of CD on the surface of

the nylon 6,6/CD nanofibers that is quite important for entrap-

ment efficiency of VOC,34,35 surface chemical characterization

of the nanowebs were performed by using ATR-FTIR and XPS

techniques.

The ATR-FTIR spectra in the region from 3700 to 900 cm21

obtained for the as-received CD, electrospun nylon 6,6 and

nylon 6,6/CD nanofibers are shown in Figure 5. The spectrum

of pristine nylon 6,6 nanofibers exhibited main characteristic

peaks at 3301 cm21 (NAH stretching vibration), 2934 cm21

(ACH2 stretching vibration), 2860 cm21 (ACHA symmetric

stretching vibration), 1637 cm21 (AC@O stretching vibration)

and 1536 cm21 (NAH bending vibration).61,72 These peaks

were also observed in the spectra of nylon 6,6/CD nanofibers.

On the other hand, the ATR-FTIR spectra of the semicrystalline

nylon 6,6 and nylon 6,6/CD nanofibers have a-type crystalline

phase located at 934, 1199, and 1475 cm21 and amorphous

components indicated at 1141 and 1180 cm21.60,72 The absence

of the FTIR peak at 977 cm21 assigned to the c-type crystalline

phase64,66 in the spectra of the nanofibers confirmed that the

CD did not change the crystalline structure of nylon 6,6, which

is coherent with the XRD data.

In the ATR-FTIR spectra of a-CD, b-CD, and c-CD (Figure 5), the

very broad band between 3000 and 3700 cm21 assigned to the

symmetric and antisymmetric OAH stretching vibrations and the

absorption peak at about 2924 cm21 corresponding to CAH bond

of CD was observed.73,74 The obvious characteristic CD peaks at

between 1000 and 1100 cm21 attributed to coupled CAC/CAO

stretching vibrations, and the peak at 1152 cm21 assigned to the

antisymmetric stretching vibration of the CAOAC glycosidic

bridge34,56,69,71,75 were identified in all ATR-FTIR spectra of nylon

6,6/CD nanofibers, but not in the spectrum of pristine nylon 6,6

nanofibers. The enhanced intensity of these CD related peaks was

also clearly observed as the CD content increased from 25%

through 50% (w/w) in the nylon 6,6/CD nanofibers. This result

indicated the existence of CD on the surface of the nylon 6,6/CD

nanofibers, and the inclusion complexation capability of these CD

could be used for the removal of VOC from the environment.

Moreover, it was observed in the enlarged region of ATR-FTIR

spectra between 3700 and 3000 cm21 (Figure 5, left side) that

the NAH stretching peak of nylon 6,6 was generally shifted to

lower wavenumber for nylon 6,6/CD nanofibers when compared

to pure nylon 6,6 nanofibers. On the other hand, the enlarged

region of FTIR spectra between 1100 and 960 cm21 in Figure 5,

right side indicated the obvious CD peak shift to higher

Figure 6. Core-level XPS spectra of O 1s from the nanofibers. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. (a) The amount of entrapped toluene (ppm) by the electrospun

nanofibers and (b) schematic representation of the formation of toluene/

CD-IC. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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wavenumber for nylon 6,6/CD nanofibers compared to pure

CD. The shifts of these FTIR peaks for nylon 6,6/CD nanofibers

possibly due to hydrogen bonding between nylon 6,6 and CD.

More distinctive peak shifts were observed for nylon 6,6/a-CD

nanofibers possibly due to smaller size of a-CD which can more

interact with the nylon 6,6 chains. The higher thermal degrada-

tion temperature of a-CD in the nanofibers compared to other

CD types, which discussed in TGA discussion is possibly

because of higher interaction between a-CD and nylon 6,6

chains. Similar FTIR peak shifts were also observed in our pre-

vious studies for zein/CD69 and polyester (PET)/CD34 nanofib-

ers due to interaction between zein and CD, PET and CD.

In order to determine the CD amount on the surface of nylon

6,6/CD nanofibers, XPS technique was used providing more sur-

face sensitivity compared to ATR-FTIR (i.e., about 10 nm depth

for XPS and 650 nm depth for ATR-FTIR having germanium

crystal, respectively).71 The atomic concentrations of as-received

CD and the electrospun nanofibers obtained from wide energy

XPS survey spectra are indicated in Table II. The appearance of a

Figure 8. Side and top view of optimized structures of single toluene and (a) a-, (b) b-, (c) c-CD IC (1 : 1). Gray, red, and yellow spheres represent car-

bon, oxygen, and hydrogen atoms, respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Side and top view of optimized structures of two toluene molecules and (a) a-, (b) b-, (c) c-CD IC (2 : 1). Gray, red, and yellow spheres rep-

resent carbon, oxygen, and hydrogen atoms, respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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higher oxygen content outer surface of the nylon 6,6/CD nanofib-

ers compared to pristine nanofibers provides evidence of the pres-

ence of CD on the fiber surface. Moreover, an increase in the

surface oxygen content was also observed with the increasing

amount of CD (from 25 to 50% [w/w]).

Furthermore, high energy resolution O 1s spectra of the nanofib-

ers were also recorded to get more detailed information about the

surface components and confirm the existence of CD onto surface

of nylon 6,6/CD nanofibers. O 1s XPS spectra of pristine nylon

6,6, nylon 6,6/25a-CD and nylon 6,6/50a-CD nanofibers are given

in Figure 6. Similar XPS spectra were also recorded for samples of

nylon 6,6 nanofibers incorporating b-CD and c-CD.

The spectrum of nylon 6,6 nanofibers has only p-bonded oxy-

gen (C@O*) at peak binding energy of 531.13 eV.76 On the

other hand, beside this carbonyl group (O 1s #1) assigned to

nylon 6,6 matrix, one more fitting peak (O 1s #2) was also rep-

resented at peak binding energy of about 532.53 in the nylon

6,6/CD spectra due to r-bonded oxygen (CAO*C) and hydroxyl

groups (CAO*H) of CD.34,76 The higher ratio of O 1s #2 peak

corresponding CD components was observed in nylon 6,6/50a-

CD nanofibers compared to nylon 6,6/25a-CD sample. These

results indicated that enhanced oxygen content on the surface

of the nylon 6,6/CD nanofibers originated from the ether and

alcohol groups of CD. Using the atomic concentrations obtained

from XPS survey spectra (Table II), it was calculated that 8%,

6%, 5%, 15%, 26%, and 20% CD were present in the probed

volume of nylon 6,6/25a-CD, nylon 6,6/25b-CD, nylon 6,6/25c-

CD, nylon 6,6/50a-CD, nylon 6,6/50b-CD, and nylon 6,6/50c-

CD nanofibers, respectively. It is known that the component

having lower molecular weight in such blend systems generally

migrates to the surface due to energetic and entropic

effects.34,77–80 Here, the lower concentrations of CD on the sur-

face of the nylon 6,6/CD nanofibers compared to the composi-

tions of the electrospun solutions indicated that some of the

CD molecules situated on the fiber surface whereas some CD

molecules were hidden in the bulk of the fiber matrix.

The Entrapment Efficiency of Toluene Vapor by Nanofibrous

Membranes

Here, toluene vapor is selected as a model VOC since CD can

form IC with toluene that is commonly used in industry for

certain purposes.26,81–83 The toluene vapor entrapment perform-

ance of the nylon 6,6 and nylon 6,6/CD nanofibers was com-

pared. The amount of toluene entrapped by nanofibers was

calculated by performing HPLC analyses and the data is given

in Figure 7(a). Quite low amount of toluene (�1.3 ppm) was

absorbed by pristine nylon 6,6 nanofibers most probably due to

a very weak interaction between toluene and nylon 6,6 nanofib-

ers. This suggest that nylon 6,6 nanofibrous membrane without

CD has minimal capability of trapping toluene vapor.35 In the

case of nylon 6,6/CD nanofibers, the amount of entrapped tolu-

ene was considerable higher (at least two times) possible due to

the complexation capability of the CD presenting on the nano-

fiber surface. The complex formation of toluene with CD cavity

is illustrated in Figure 7(b), schematically.

Nylon 6,6/25a-CD, nylon 6,6/25b-CD, and nylon 6,6/25c-CD

nanofibers captured �2.8, 8.1, and 3.4 ppm toluene, while the

amount of toluene entrapped by nylon 6,6/50a-CD, nylon 6,6/

50b-CD, and nylon 6,6/50c-CD nanofibers was �3.2, 21.6, 10.2

ppm. For each CD type, we observed that the amount of tolu-

ene entrapped was increased as the loading of CD in the nano-

fibers was increased from 25 to 50%, since the amount of CD

existing on the fiber surface was also increased as confirmed by

XPS data. When the CD types were compared, the amount of

entrapped toluene vapor was on the order of nylon 6,6/b-

CD> nylon 6,6/c-CD> nylon 6,6/a-CD, indicating that the

used CD type was quite important for the inclusion complexa-

tion owing to different size/shape match between the host CD

and toluene. The IC formation depends on the relative size of

the CD cavity to the size of the guest molecule.36,70,84–86 Based

on the different CD dimensions [Figure 1(a)], generally, a-CD

can form complex for compounds with aliphatic side chains or

low molecular weight molecules, b-CD can form complex with

heterocycles and aromatics, and c-CD can accommodate larger

molecules such as steroids and macrocycles.30,87 Therefore, each

CD type can have different capability for the inclusion complex-

ation with the same guest molecule. Our result indicated that

b-CD cavity is more suitable host for toluene molecule possibly

due to a better fit and size match between cavity size of b-CD

and toluene molecule.83 Moreover, nylon 6,6/50b-CD presented

the highest toluene entrapment efficiency among the other sam-

ples, since the XPS survey scans shows that surface of this sam-

ple has highest amount of CD which could complex with more

amount of toluene. It can be concluded that the toluene entrap-

ping efficiency of the nanofibers depends on both the amount

of surface associated CD molecules and the type of CD. In brief,

the findings suggested that CD functionalized electrospun nylon

6,6 nanofibers would be very effective for the removal of VOC

from the environment due to their very large surface area along

with inclusion complexation capability of surface associated CD

on the nanofibers.

Modeling Toluene Molecules Inside the CD Cavities

The stability of CD-IC when one (1 : 1) and two (2 : 1) toluene

molecules included in CD is examined by using first-principles

modeling techniques. First, the initial geometries of a-, b-, and c-

CD and toluene molecule(s) are fully optimized separately in vac-

uum. In order to form a complex, first single toluene molecule is

introduced into each CD at various positions and with different

orientations. For each case, the whole system is optimized with-

out imposing any constraints. For the lowest energy configura-

tions (Figure 8), the complexation energy (Ecomp), which

determines the stability of different complexes, is calculated as

Ecomp5ECD1n3Etoluene2Etoluene1CD

where ECD, Etoluene, and Etoluene1CD is the total energy (includ-

ing van der Waals interaction) of CD (a, b, and c), toluene,

and toluene-CD complex, respectively, and n is the number of

toluene molecules. Ecomp is calculated as 16.14, 18.45, and 11.53

kcal/mol for a-, b-, and c-CD, respectively. According to our

analysis all CD can make IC with single toluene but the most

stable one (with largest Ecomp) is obtained for b-CD.

In a similar manner, we examine the possibility of two toluene

molecules entering the host CD (2 : 1). Initially, two toluene mole-

cules are optimized in vacuum and the equilibrium distance
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between them is calculated as 3.6 Å with the interaction energy

(Etol-tol) 2.02 kcal/mol which indicates an intermolecular p–p inter-

action. When toluene pair enters a-CD, it deforms the host and

second toluene is expelled as shown in Figure 9(a). Accordingly

Ecomp reduces and becomes 14.90 kcal/mol upon introducing a sec-

ond toluene when Etol-tol is taken account indicating that 2 : 1 com-

plex formation is not favored for a-CD. On the other hand, for b-,

and c-CD, toluene pair can fit in the cavity [Figure 9(b,c)] and this

further reduces the total energy of the system with increasing Ecomp

to 27.86 and 25.46 kcal/mol, respectively. Finally, our ab initio

modeling results confirmed 2 : 1 toluene : b-CD stoichiometry and

suggests that b-CD cavity is the most suitable host for toluene pair

yielding the highest complexation energy.

CONCLUSIONS

In this study, we combined the very high surface area of electro-

spun nanofibers with the inclusion complexation capability of CD

molecules for the efficiently removal of toluene vapor from the sur-

rounding. For this purpose, CD functionalized electrospun nylon

6,6 nanofibrous membranes were produced via electrospinning,

using three different types of native CD (a-CD, b-CD, and c-CD)

having 25% and 50% (w/w) weight loading in the nanofiber

matrix. SEM images indicated that bead-free nanofibers were

obtained by electrospinning of nylon 6,6 and nylon 6,6/CD solu-

tions. The distribution of CD into fiber matrix without forming

any crystalline aggregates was confirmed via XRD study. The %

weight of CD within resulting nanofibers calculated from TGA

thermograms was consistent with the initial CD loading in the sol-

utions used for electrospinning. TGA thermograms of resulting

nylon 6,6/CD nanofibers also indicated enhanced thermal stability

of both CD and nylon 6,6 owing to the interaction between the

polymeric matrix and the CD. ATR-FTIR and XPS analyses indi-

cated that some of CD were located on the surface of nylon 6,6/CD

nanofibers. The existence of CD amounts on the fiber surface

increased as the CD content increased from 25 thru 50% (w/w,

with respect to polymer) in the nylon 6,6/CD nanofibers. More-

over, ATR-FTIR peak shift was observed due to interaction (possi-

bly H bonding) between CD and nylon 6,6. Toluene vapor was

used as a model VOC for entrapment experiments. We observed

that nylon 6,6/CD nanofibrous membranes entrapped higher

amount of toluene when compared to pristine nylon 6,6 nanofibers

due to the IC formation capability of the surface associated CD

molecules. The entrapment efficiency of toluene vapor was found

to be better for nylon 6,6/b-CD nanofibers when compared to

nylon 6,6/a-CD and nylon 6,6/c-CD nanofibers possibly due to

better fit and size match between b-CD cavity and toluene. More-

over, our computational modeling results based on first-principles

calculations show that, the complexation energy of toluene-CD is

higher for b-CD compared to a-CD and c-CD. Both experimen-

tally and theoretically, b-CD cavity is found the most suitable host

for toluene molecule. Our results suggested VOC compounds such

as toluene can be removed from the environment using electrospun

nylon 6,6 nanofibers functionalized with CD.
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